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An important question in the preliminary dimensioning of processes of the technical logistics in 
warehouses is the calculating of the probability characteristics of the serving time with non-stationary 
hoisting and hauling devices (for example: transmanipulators in high-bay warehouses and electric 
trucks in conventional warehouses). The known works from the last 30 years analyze separately the 
problems in the specifics orthogonal (Manhattan) metric and metric of Chebyshev.

In the present material a general method is being introduced. This method offers a way for 
calculating of base probability valuations of the serving time in deprived of individuality space with 
uniform distribution of the requests by a movable server through single command cycle in simple and 
complex work zones in the typical for the intralogistics metrics. The method is based on isochrone 
analysis through geometrical interpretation of the probability distributions. Applicable examples are 
also included.

Keywords: warehouse logistics, metrics, service meantime, isochrones

Introduction
The problem for calculating of service time characteristics (through cyclic hoisting and hauling 

devices) is one of the longest and most exhaustive examined ones by the analytical logistics [1], [2], 
[3] and others. In one of its fundamental varieties the problem is often formulated for a server, which is 
non-stationary, but it should move to a point in the plane, where a request for service has been arisen. 
When the position has been reached an action with defined duration (determined or accidental) is 
being performed (for example – storaging or retrieving of warehouse unit). This action may complete 
the request at the same position, or (more often) a secondary movement of the server back to the start 
position is necessary, where the request is being completed.

The described process is named single command cycle [2], [4], and it’s typical as for traditional 
tasks in the warehouse logistics, also for a number of tasks met in the daily round of servicing, trade 
and the industry – emergency service, courier service, fire departments and others.

The movement of the server is being characterized by its constructive specialities, and also by 
the service zone geometry. The problem has been solved for the typical intralogistics metrics –
orthogonal metric and Chebyshev’s metric [3], [4]. The researches of the last 20 years are being 
analyzed in a current work [5]. The existing methods solve the problem separately depending by the 
metric (orthogonal or Chebyshev’s one) in which the server works.

The present material has the purpose to present a general method, which draws attention to the 
given geometry and metric, but doesn’t make the problem in a special case because of them.

Method’s presentation
In the present material are being investigated the calculations related to the probability 

characteristics of the server movement times. The times necessary for loading, unloading, storaging 
and retrieving are being ignored, corresponding to the work of Bozer and White [5].

For the method’s presentation a rectangular service zone (rack) will be used. It’s being serviced 
by a movable server (transmanipulator). Let the requests are uniformly distributed in the zone. Because 



the traveling times are of interest, 
the service zone is at first 
transformed from the (original) 
space domaing to a time domain. 
Then the time domain will be 
transformed to a normalized time 
domain (this approach has been 
shown by Goetschalckx). The 
transformations are illustrated on 
Figure 1.

The space domain represents the service zone with its real size – length L and height H.
Through division by the server velocity, the corresponding horizontal and vertical sizes are: xx vLT /
and yy vHT / .

Through the time domain sizes, the maximal traveling time in the zone T is being calculated. In 
the case of Chebyshev’s metric, and choice of loading-unloading station at the lower-left corner of the 
zone, for T is valid: T=max{Tx,Ty}.

The sizes of the normalized time domain are being obtained as the corresponding sizes of the 
time domain are being divided by the maximal time T – i.e. horizontal Tv/T=1, and vertical Ty/T=b. 
For values of b: 0 < b < 1.
As first step of the method, is being calculated the expected traveling time from the loading-unloading 
station to a random request point in the normalized time domain. For a point with coordinates (x,y) in 
the domain, the traveling time z is z = max(x,y). The mean time is being calculated as integral sum of 
the product of the traveling time and the probability for request, for each point of the normalized 
domain S:
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For this calculation to be done, the domain points are being 
considered in groups. On the normalized time domain, the isochrones 
are being examined, with epicenter the loading-unloading station 
(point 0). The distance between point 0 and each isochrone is exactly z  
(0≤z≤1) – the traveling time (Figure 2). If the isochrone is considered 
as infinitesimal surface, then the probability of a random request to lie 
on a given isochrone (when the requests are uniformly distributed) 
equals to the ratio of the isochrone surface dW(z) to the whole area of 
the service zone.
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After substitution of equation (2) into (1), for the mean traveling time E(z) the following 
integral sum is obtained: 
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The equation represents a sum of the geometrical probabilities dW(z)/S, weighted according z –
the distance from the isochrone surface dW(z) to the epicenter of the isochrones.

But for E(z) is also known:
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From (3) and (4) follows:
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The last transformation has been done, because the factor z changes both sides equally. 
Through the last equation the probability mass function may be obtained:
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The application of this equation is shown below. At this moment it’s enough to note, that 
through geometrical probability it’s possible to calculate the probability mass function f(z). The next 
steps are calculation of the variance and the variation coefficient of z.
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By knowing the probability characteristics of the random variable z, it’s easy to obtain the 
characteristics of the single command cycle. The service time of cycle for a request residing on a given 
isochrone equals to the time necessary for traveling to, and back traveling from this isochrone. I.e. the 
time SC for single command cycle equals to the doubled time z, which is traveling time from the point 
0 to the isochrone. Or from mathematical point of view, SC is a function of the random variable z:

zzsSC 2)(  (9)
Then from the known dependences it can be written:

Thus, the probability characteristics of single command cycle have been calculated, based on 
equation (5). The metric has been used just as contrivance for defining the surfaces dW(z), and it 
doesn’t influence in other way the method.

As it’s being shown in the application of the method in 
the following points, the probability mass function f(z) is not 
ever continuous function. For this reason, the integral sum 
from 0 to 1 should be divided to intervals at the points of 
discontinuity. Such dividing is comparatively easy, because of 
the geometrical nature of the probabilities.

Application in Chebyshev’s metric
Consider a rectangular zone with uniformly distributed 

service request. The zone is being serviced by a server, which 
works in a Chebyshev’s metric, with equal horizontal and 
vertical velocities. Without lose of generality, assume that the 
zone’s length L is greater than its height H.

By the given conditions the maximal traveling time in 
the zone is xvLT / . Through it, the normalized time domain

is being obtained - a rectangle with sides TTb y / and



TTx /1   (Figure 3). 

On the normalized time domain are also the isochrones added, 
according to the rules of the Chebyshev’s metric. Their epicenter is the 
loading-unloading station (point 0). The distance between point 0 and each 
isochrone is z (0 ≤ z ≤ 1), representing the traveling time. 

In this case, the infinitesimal surfaces should be defined in two 
intervals – for z = [0,b], and z=(b,1]. In the first interval the isochrones are 
vertical and horizontal straight lines, each of them lying at time (distance) 
z from point 0. At the same time from point 0 lie all points at distance (in 
Chebyshev’s metric) smaller than dz/2 from the straight lines, as 0dz . 
Grouped, these points represent the infinitesimal surface dW(z) of the 
isochrone, which should be calculated. The surface dW(z) is illustrated as 
hatched area on Figure 4. For representation of the surface as function of 
z, the following reasoning may be done: The double 
hatched areas A and B are equal quadrates, with sides 
dz/2. Then, the surface dW(z) may be considered as 
two rectangles – with sides z and dz – overlapped 
over the area B, and the area A to be ignored. Thus, 
for the surface dW(z) in the interval from 0 to b can 
be written dW(z)=2.z.dz.

In the interval from b to 1, the isochrone 
represents a vertical straight line, which lies at time z 
from point 0. The set of points lying at time smaller 
than dz/2 is an infinitesimal rectangle with sides z and 
dz (Figure 5). And the surface of the rectangle equals 
dW(z)=b.dz.

Summarizing for the whole zone z = [0,1], 
according to equation (5), the probability mass 
function can be written, as the surface of the whole zone is bbS  .1 :
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The probability mass function
f(z) coincides with the derived one in 
[4]. It has been illustrated graphically 
on Figure 6.. When the f(z) is 
already a known function, the 
probability characteristics of the 
variable z are being calculated 
through the equations (6)-(9) given 
in the previous point. For the 
probability characteristics of the 
single command cycle (which are of 
greater interest) the equations (10)-
(13) are being used.

It should be noted, that the derived expressions coincide with cited results of other authors [5]. 
The common forms of these equations have been given in Table 1. An attention should be paid, that all 
results are in normalized time domain. The real time values can be calculated through T.



Application in orthogonal metric
In this point equation (5) is being used again, in order

that the mean service time to be calculated in a service zone
with orthogonal metric.

Consider a rectangular zone with uniformly 
distributed service request. The zone is being serviced by a 
server, which works in a Chebyshev’s metric, with equal 
horizontal and vertical velocities. Without lose of generality, 
assume that the zone’s length L is greater than its height H.

For the given conditions the maximal traveling time 
(the maximal distance in the time domain) is 

LH vLvHT //  , which is the necessary time for traveling 
from the lower-left corner, to the upper-right one. Through 
the time T the normalized time domain is 
being constructed – a rectangle with sides 

TTb y / and TTb x /1  , for b≤0,5. In 

the model the isochrones (the infinitesimal 
surfaces) are being illustrated, which in 
orthogonal metric represent straight lines 
sloped at angle 45 towards the rectangle 
sides (Figure 7).

In this case the infinitesimal surfaces 
dW(z) should be considered in three 
intervals: Interval I: ],0[ bz ; Interval II: 

]1,( bbz  and Interval III: ]1,1[ bz  .
An isochrone from interval I is being 

considered (Figure 8). It represents isosceles 
trapezoid ABCD, with middle segment PQ
which lies on distance z from point 0. The
distance between the middle segments of
two neighbour isochrones is dz (in 
orthogonal metric). Thus, the length of the
congruent segments is dz, and the points P
and Q are their middles. Through the point P
and Q the heights A1B1 and C1D1 are being 
constructed. The triangles PBB1 and PAA1 
(and also QCC1 and QDD1) are congruent. If from the ABCD trapezoid’s surface dW(z) subtract the
surfaces of the triangles PBB1 and QCC1, and then add the surfaces of triangles PAA1 and QDD1, the 
result will be same. Then, the surface dW(z) is also equal to the surface of the rectangle A1B1C1D1.
The rectangle itself has sides w(z) and h(z), for which it’s easy to obtain:
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Thus, for the isochrone surfaces in 
the interval ],0[ bz it can be written:
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Througn similar reasonings for 
intervals II и III the following is derived:
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Through these results according to equation (5), the probability mass function f(z) can be 
written, as taking into account that )1.( bbS  . The result has been given in Table 2. Graphically, the
function f(z) is shown on Figure 9. 

Again, when the probability mass
function f(z) is known, the probability
characteristics of the traveling time z can be
obtained. And also, through representation of 
the service time as function of random variable
SC(z), the characteristics of the single command 
cycle service time can be calculated. For 
example:
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The same result will be produced for the case
with orthogonal metric, trough the approach 
given in [3]. The other characteristics are given in Table 
3, as their calculation has been done with equations 
(10)-(13).

It’s a good idea to note again, that the values are 
valid in normalized time domain. To obtain the real 
time values, each of them should be multiplied by T.

Conclusion
The method presented gives a general approach 

for solving problems of calculating probability 
characteristics of the service time, through a direct geometrical analogy of the isochrones, independent 
of the metric type. The application of this method for single command cycle has been presented for 
different metrics, and also coincidence with the results from other authors is proved. The approach for 
using isochrones through direct geometrical analogy, as contrivance for obtaining the service time 
characteristics, is applicable for arbitrary convex service zones, and also for non-convex, with some 
conditions about the location of the base position.
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